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ABSTRACT 
Higher Order Ambisonics (HOA) is a flexible approach for representing and rendering 3D sound fields. 
Nevertheless, lack of effective microphone systems limited its use until recently. As a result of authors’ previous 
work on the theory and design of spherical microphone arrays, a 4th order HOA microphone has been built, 
measured and used for natural recording. The present paper first discusses theoretical aspects and physical 
limitations proper to discrete, relatively small arrays (spatial aliasing, low-frequency estimation). Then it focuses on 
the objective validation of such microphones. HOA directivities reconstructed from simulated and measured 3D 
responses are compared to the expected spherical harmonics. Criteria like spatial correlation help characterizing the 
encoding artifacts due to the model limitations and the prototype imperfections. Impacts on localisation criteria are 
evaluated. 
 

1. INTRODUCTION 

Ambisonics is a 3D sound spatialisation technology 
developed mostly by Michael Gerzon [1] in the early 
1970s, which permits to render 3D sound fields in a 
flexible way from the knowledge of their 1st order 
directive information at one point: omnidirective (W) 
and 3D bidirective (X, Y, Z) components which 
constitute the so-called B-Format . Nevertheless, its low 
spatial resolution limits the correct sound field 
reconstruction to a small listening area, especially for 

high frequencies. Higher Order Ambisonics (HOA)    
[2-4] extends the B-Format to higher resolution by 
means of spherical harmonic decomposition of the 
sound field, which results in enlarging the reproduction 
area (i.e. the sweet spot). 

A practical 1st order HOA recording system was 
described from the very beginning by Craven and 
Gerzon [5], from which the so-called SoundField 
microphone was built. Nevertheless, until recently 
physical limitations of small discrete microphone arrays 
didn’t make possible the implementation of HOA 
pickup systems with higher spatial resolution. Authors’ 
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previous work and other recent studies brought practical 
solutions to design such microphone arrays. Different 
strategies have been proposed, including spherical 
microphone arrays [6-12] and arrays with multiple radii 
[13]. 

After reviewing HOA basics, the present paper focuses 
on the objective validation of spherical microphones 
arrays for HOA recording. Theoretical aspects of 
discrete sensor arrays are discussed and highlight 
physical limitations proper to relatively small discrete 
arrays, especially concerning spatial aliasing and low 
frequency estimation. The latter involves filters with 
excessive bass-boost which need to be reduced for 
practical purpose. This is done by introducing 
regularization filters in the estimation process. Finally, a 
4th order prototype have been built, measured and used 
for natural recording for objective validation of such 
microphones. HOA directivities reconstructed from 
simulated and measured 3D responses are compared to 
the expected spherical harmonics. Criteria like spatial 
correlation help characterizing the encoding artifacts 
due to the model limitations and the prototype 
imperfections. 

2. HIGHER ORDER AMBISONICS BASICS 

This section draws a brief overview of basic concepts 
and properties of HOA. Before introducing further 
acoustics fundamentals in 2.2, we first restrain to 
horizontal systems description in 2.1. All concepts 
introduced in this section are more thoroughly discussed 
and extended to 3D in [3, 14]. They are useful as a 
starting point for the problematic of HOA recording. 
They also provide complementary characterisation 
criteria to asses the microphone performance from the 
reproduction point of view. 

2.1. Spatial encoding and decoding for virtual 
sound imaging 

Ambisonics can be categorized in the family of 
amplitude panning techniques, when dealing with 
virtual source spatialisation, and/or coincident 
microphone techniques when dealing with sound field 
recording. Among them Ambisonics has the 
particularity of splitting the spatialisation process into 
spatial encoding and spatial decoding.  

2.1.1. Spatial encoding 

Spatial encoding itself is a kind of amplitude pan-pot 
but results in an intermediary format that is not 
dedicated to any loudspeaker setup for sound 
reproduction. Equations system (1) shows encoding 
laws for a source in azimuth direction θv and emitting a 
signal Sv: 
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The first three lines define the so-called “1st order 
horizontal encoding” and yield the horizontal 
components (W,X,Y) of the well-known B-Format 
introduced by Gerzon [15]. For each new "order" m>1 
up to a maximum order M, a pair of additional lines 
exhibits Higher Order Ambisonics encoding functions 
and associated components Bmm

σ. Note that the order m 
corresponds to the angular frequency. An Mth order 2D 
sound field representation comprises (2M+1) 
components. 
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Figure 1 Horizontal encoding using 0th, 1st order (left) 
and 2nd order (right) directivity patterns. Positive and 
negative gains are resp. in red and blue. For each source 
(in arrow’s direction) and each directivity, the encoding 
gain is given by the intersection point between arrow 
and pattern (more precisely its distance from the centre). 

As illustrated on the left part of Figure 1, 1st order 
encoding offers a quite limited angular discrimination 
for virtual sources that are relatively close to each other. 
This is probably a first cause of the lack of sound image 
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precision and robustness criticized by detractors of 
Ambisonics (and of coincident microphone techniques 
more generally). By introducing “higher order 
ambisonic” encoding functions (1), i.e. functions which 
variation is greater for the same angular variation, a 
better angular discrimination is possible (right part of 
Figure 1 illustrates encoding with 2nd order functions).  

Left column of Figure 3 shows polar patterns of 
ambisonics directivities up to the 4th order. Since 1st 
order recording requires omni and bidirectional 
microphones, or a combination of e.g. cardioids, it 
easily makes sense for sound engineers. The latter might 
be dubious regarding practical recording using higher 
order directivities since no existing single microphone 
has one of such directivities. It is the object of this paper 
to prove that an efficient solution exists. 

2.1.2. Spatial decoding 

Generally speaking, spatial decoding consists in 
combining ambisonic signals Bmm

σ to produce signals Sn 
radiated by loudspeakers, with the aim at creating 
phantom sound images accordingly to the encoded 
sound scene. More formally, this is done by a matrix 
operation:  

 .=s Db , (2) 

exhibiting decoding matrix D and vectors [ ]1 ... NS S=s  

and 1 1 1 1 1
00 11 11 ... MM MMB B B B B+ + − + −⎡ ⎤= ⎣ ⎦b . We qualify as “basic” 

the decoding such that the ambisonic sound field that 
would be recorded in the centre of loudspeakers setup is 
the same as the originally encoded sound field [16]. In 
the case where loudspeakers form a regular polygon and 
with encoding convention of (1), decoding matrix is 
defined as: 

 1 T

N
=D C , (3) 

where columns of matrix [ ]1 ... N=C c c  are vectors 

1 ... 2 cos( ) 2 sin( )
T

n n nM Mθ θ⎡ ⎤= ⎣ ⎦c  of encoding 

gains associated to loudspeaker azimuth θn. For an Mth 
order encoding, at least N=2M+2 loudspeakers are 
recommended for a homogeneous reproduction.  

Another way of understanding ambisonic spatialization 
is to merge spatial encoding and decoding, so that 
encoding directivities are themselves combined to form 
directivities of virtual microphones associated to 

loudspeakers individually, as if these virtual 
microphones would directly capture the sound field and 
feed the loudspeakers (Figure 2).  

 
Figure 2 Virtual recording equivalent to 1st order 
encoding and basic decoding over a hexagonal layout, 
with a sub-cardioid pointing to each loudspeaker (only 
one is coloured for clarity). For each loudspeaker and 
for a given direction virtual source (in green), the 
panning gain is characterized by the length and colour 
of the large arrow, and also related to the intersection 
point between the directivity pattern and the green 
arrow. 

Two observations arise from Figure 2. First, the main 
lobe of the directivity pattern is quite large regarding the 
angular spacing between loudspeakers. With a 2nd order 
encoding and decoding, one gets a thinner virtual 
directivity (2nd column of Figure 3, M=2) that helps 
making a more selective use of loudspeakers and 
creating more precise and robust sound images. With 
higher orders, even thinner directivities are involved 
instead, while requiring more loudspeakers in order to 
avoid “holes” between loudspeakers. The second 
comment is about the presence of non negligible 
secondary lobe(s). These are useful at low frequency for 
a proper reproduction of wave propagation properties 
(see also next section), but should be reduced regarding 
other criteria. This can be done by changing the 
proportion of the various elementary encoding patterns 
when combining them. In practice, this involves a 
modified decoding that consists in weighting ambisonic 
signals Bmm

σ by order-dependent gains gm before 
applying the basic decoding matrix [16]. The so-called 
“max rE” decoding [16] aims at “concentrating” the 
energy contributions towards the expected direction (see 
also in next section). As shown in Figure 3, it reduces 
secondary lobes without substantially enlarging the 
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main one. It is recommended for medium and high 
frequencies. The so-called “in-phase” [17] (or 
“controlled-opposite” according to Richard Furse's 
terminology) decoding completely removes secondary 
lobes, but enlarge quite significantly the main one. It is 
recommended for large listening area to limit the 
perception of loudspeakers in directions opposite to the 
expected one at off-centred listening positions.  

 
Figure 3 – Typical examples of recombination of 
encoding directivities (left column) of orders m=0 to 4, 
resulting in equivalent virtual microphone directivities, 
for three kinds of decoding. Getting from a virtual mic 
directivity to the next order’s one, the lobes of the 
additional encoding pattern help (from front to rear) 
reinforcing the main lobe, thinning it, and reducing 
secondary lobes (while creating two others). 

2.1.3. Characterization of spatial rendering 

As explained just above, the distribution of the energy 
of signals emitted by loudspeakers gets confined in a 
thinner angular sector around the virtual source 
direction as higher order components are involved. As a 
consequence, the acoustic interference occurs mainly 
between waves from loudspeakers closer to each other, 
and therefore it gets larger. Finally, the wave front 
synthesized by wave interference is reconstructed over 
an area that extends as the order increases (Figure 4).  

 

 
Figure 4 Progressive reconstruction of a wave front 
(right-bottom) with ambisonic encoding and decoding 
of orders M=1 to 3 (left to right, top to bottom), by 
interference of waves coming from resp. 2, 4, 6 
loudspeakers (see conventions of Figure 2 for 
arrows).The boundary of well reconstructed area is 
shown as a constant-error contour. 

So the area of well reconstructed sound field is bounded 
by the interference width. To get an idea of it, let’s 
consider the case where the number N of loudspeakers 
fits the best the angular selectivity, i.e. N=2M+2. For 
some incidences, interference mainly occurs between 
waves with angular gap 2π/N=2π/(2M+2), and therefore 
its width is: 
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2sin /(2 2)

c ff
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+

 (4) 

Considering a centred listening area of radius R, and a 
“safety margin” Rm to avoid interference side effects, 
the sound field might be correctly rendered at the 
listener’s ears up to a frequency flim such that 

lim m( ) 2( )f D R RΛ = = + . It has been numerically 
observed that the necessary safety margin decreases in 
inverse proportion to increasing order M, so that it can 
be approximately replaced by Rm=R/M : 
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A useful example is the case of a single, centred 
listener. Fixing R=8.8cm as a typical head radius, 
rounded values of flim are listed in Table 1 and used as 
reference in the analysis of microphone performances in 
section 6. 

Above the frequency flim, a decoding that better 
“concentrates” the energetic contributions in the 
expected direction is recommended. That is the so-
called “max rE” decoding [16], which maximizes the 
norm Er  of the energy vector E

r
: 
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where Gn is the signal gain associated to the loudspeaker 
n in the case of a single virtual source. In terms of 
perceived localisation, energy vector’s norm rE (rE≤1) 
can be interpreted as a reduction factor of lateralisation 
effect [3]. That might result in an elevation effect of 
angle αE=acos(rE) when the listener turns the head. 
More generally, one could roughly consider that angle 
αE characterizes the blur width of the created phantom 
image since in a particular, but representative case, the 
latter is produced by two loudspeakers at +αE and –αE 
around the virtual source direction. Values given in 
Table 1 are also used as reference in section 6. More 
generally αE =π/(2M+2) for a Mth "max rE" decoding. 

 
Order M 1 2 3 4 
flim 700 Hz 1300 Hz 1900 Hz 2500 Hz 
αE  45° 30° 22.5° 18° 

Table 1 Limit frequencies flim of the acoustic 
reconstruction at a centred listener ears. Predicted angle 
αE of the blur width of the phantom image. 

2.2. Further acoustics basics for HOA 

2.2.1. Fourier-Bessel series 
HOA is grounded on spatial harmonic representation of 
3D sound field, the so-called Fourier-Bessel series, 
which comes from the resolution of the homogeneous 
Helmholtz equation ( )2 0k p∆+ =  (with wave number 

2 /k f cπ= , frequency f  and sound speed c ) in a 
source-free region of space. In the spherical coordinate 
system shown in Figure 5 (radius r, azimuthθ , 
elevation δ ), Fourier-Bessel series is defined as follow: 

0 0 1
( , , ) ( ) ( , )

m
m

m mn mn
m n

p kr i j kr B Yσ σ

σ
θ δ θ δ

∞

= = =±
= ∑ ∑ ∑  (7) 

where 

 
1 ( , , ) ( , ) ,
( )

if ( ) 0,  is the unit sphere.

mn mnm
m S

m

B p r Y dS
i j kr

j kr S

σ σθ δ θ δ=

≠

∫∫  (8) 

 
Figure 5 Spherical coordinate system in which any 
point of 3D Euclidean space is described by its radius r, 
its azimuth θ , and its elevation δ . 

 
Figure 6  Illustration of spherical Bessel function up to 
order 4. 
Radial1 functions ( )mj kr  are spherical Bessel functions 
and are illustrated in Figure 6. Angular functions mnY σ  
are the so-called spherical harmonics (Figure 7), with 

0m≥ , 0≤n≤m and σ=±1. Various definitions of these 
functions exist and we use real spherical harmonics 
defined according to [18]: 

                                                           
1 Note that the radial “distance” from origin actually 
depends on both radius and frequency. 
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where (sin )mnP δ  are the associated Legendre 
functions.  
 

 
Figure 7  3D view of spherical harmonics up to order 3 
with usual designation of associated HOA components. 

The case of a sound field consisting of a plane wave is 
of particular interest. Considering a wave incidence 
(θS, δS) and a conveyed signal S leads to the following 
expression of ambisonic components: 

 . ( , )mn mn S SB S Yσ σ θ δ=  (10) 

This equation provides new, 3D encoding laws that 
complete equations (1) or can be used instead. They 
yield (M+1)2 components for an Mth order 3D 
representation. The spatial decoding process is very 
similar as in 2.1.2, but requires "periphonic" (3D) 
loudspeaker setups (e.g. according to polyhedral 
geometries). For further explanation, refer to [3].  

2.2.2. HOA representation and sound field 
approximation 

The M-order truncation of Fourier-Bessel series 
provides an approximate representation of the sound 
field: 

  
0 0 1

( , , ) ( ) ( , )
M m

m
M m mn mn

m n
p kr i j kr B Yσ σ

σ
θ δ θ δ

= = =±

= ∑ ∑ ∑  (11) 

This approximation requires ( )21K M= +  HOA signals. 
In order to objectively characterize the approximation 
accuracy, we use the Normalized Mean Square Error 
(NMSE) associated to a finite order of truncation M: 

 

2

2

( , , ) ( , , )
( )

( , , )

M
S

S

p kr p kr dS
e kr

p kr dS

θ δ θ δ

θ δ

−
=
∫∫

∫∫
, (12) 

where S is the unit sphere. For the particular case of a 
sound field only made by plane waves, Equation (12) 
can be simplified [19]: 

 ( ) ( )( )2

0
( ) 1 2 1

M

m
m

e kr m j kr
=

= − +∑  (13) 

In this case, the error ( )e kr  is independent of angular 
position of the source. Figure 8 illustrates the NMSE as 
a function of kr for truncation orders going from 0 to 15. 
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Figure 8 Normalized Mean Square Error for the plane 
wave case and order 0 to 15. 

Clearly, it shows that for a constant value of error (e.g. 
4% represented by the dotted line in Figure 8), i.e. for 
the same approximation accuracy, the higher kr, the 
higher the truncation order M should be. Moreover, the 
dotted line in Figure 8 corresponding to a 4% error cut 



Moreau et al. 3D Sound Field Recording With HOA
  

AES 120th Convention, Paris, France, 2006 May 20–23 
Page 7 of 24 

the curves such that M kr=  approximately. Thus, for a 
given wave number K (or a corresponding frequency) 
and a given radius R of the approximation sphere, a 
simple rule can defined to determine the order that 
allow a reasonably accurate approximation of the sound 
field [19]: 

 M KR=⎡ ⎤⎢ ⎥ , (14) 

where ⋅⎡ ⎤⎢ ⎥  denotes rounding up to the nearest integer. 
For example if we wish to represent a 1kHz plane-wave 
field within a sphere of radius 0.1m with a 4% error, 
this rule indicates a sufficient truncation order of value 
2. But for a 5kHz plane-field within the same sphere of 
radius 0.1m and with 4% error, the truncation order 
must be at least equal to 9. 
It's worth noticing that equation (11) fully complies with 
estimation of frequency limit given by (5). Such 
considerations can provide a criterion for the design of 
HOA microphone system and for the assessment of its 
performance in term of potential spatial rendering (see 
section 6.3). 

3. THEORETICAL BASES OF SPHERICAL 
MICROPHONE FOR HOA RECORDING 

Direct recording of HOA signals that describe an actual 
sound field using of directional microphones located at 
one single point is not feasible. An alternative method 
consists in deriving HOA signals from a set of acoustic 
measurements made by usual microphones and a 
corresponding mathematical model which relates these 
quantities to HOA signals. In this section, we first study 
continuous modeling of the problem of HOA signals 
estimation. Then, we transpose the continuous models 
into their discrete counterparts and discuss induced 
spatial aliasing. 

3.1. Mathematical modeling of a continuous 
spherical HOA microphone 

3.1.1. Spherical microphone derived from 
spherical Fourier transform 

The spherical Fourier transform (8) suggests a 
theoretical method of estimating HOA signals from the 
recording of acoustic pressure over a continuous 
spherical surface of radius R. This method illustrated in 
Figure 9 consists in projecting the continuous spherical 
measurement onto the spherical harmonic basis and 
equalizing the resulting signals according to their order 
by means of filters ( ) 1/ ( )m

m mEQ kR i j kR= . 

Nevertheless, this method is valid only if ( ) 0mj kR ≠ . 
Unfortunately, the Figure 6 shows that for all m  orders, 

( )mj kR  takes the zero value regularly over the kr  
range. Moreover, when ( )mEQ kR  is defined, it yields a 
huge signals amplification for kR around the zeros of 

( )mj kR . Such amplification is impracticable. 
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Figure 9 Schematic view of a theoretical spherical 
HOA microphone. 

The huge amplification reflects difficulties encountered 
by the spherical microphone to estimate HOA signals 
from measures. These difficulties are partly explained 
by the lack of intrinsic directivity of the spherical 
microphone. Indeed, only phase differences exist 
between each measurement point in order to distinguish 
all spherical harmonics components. This creates 
indeterminate frequencies that are functions of the 
radius and the order, and correspond to the zeros of the 
spherical Bessel functions. For example, the zero order 
HOA signal 1

00B  in the Fourier Bessel series can’t be 
estimated with a spherical sensor array at frequencies 

/ 2af a c R= , where a  is a positive integer, c  the 
celerity of sound, and R  the radius of the sphere, that is 
at wave numbers 2k R= . A solution to avoid 
undetermined frequencies is to make the sensors 
measurements directional. 

3.1.2. Improving the spherical microphone 
directivity 

Usual directional sensors can be used to improve the 
microphone directivity. A 1st order directional sensor 
records a signal proportional to a combination of 
acoustic pressure and particle velocity: 

( , , )( , , ) ( , , ) (1 ) p kRs kR p kR c
kR

θ δθ δ α θ δ α ρ ∂
= + −

∂
 (15) 

where cρ  characterizes acoustic impedance. Typically 
0 1α≤ ≤  in order to obtain the maximum value 1 at the 
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incidence ( 0 , 0θ δ= =o o ). By introducing Equation 
(15) in the Fourier Bessel series (7), we obtain the 
spherical harmonic expansion of a 1st order directional 
measure: 

( ) ( ) ( )( )

( )

0

0 1

, , (1 )

,

m
m m

m
m

mn mn
n

s kR i j kR j kR

B Yσ σ

σ

θ δ α α

θ δ

∞

=

= =±

′= − −

×

∑

∑ ∑
 (16) 

where ( )mj kR′  is the first derivative of ( )mj kR  
according to kR . Orthogonal projection of ( , , )s kr θ δ  
onto the spherical harmonic basis leads to the following 
expression of HOA signals: 
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allowing us to deduce HOA signals in a similar way as 
shown in Figure 9, the equalization process being 
defined as follow: 
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m m

EQ kR
j kR j kRα α
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 With ( ) ( )(1 ) 0m mj kR j kRα α ′− − ≠ . This radial 
expression is illustrated in Figure 10 for the particular 
case of cardioid sensors, i.e. for 0,5α = . The figure 
shows that this function equals the zero value only for 

0kR =  (and orders 1m ≥ ), and then seems to be more 
adapted to HOA signal recording over a large frequency 
band. 
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Figure 10 Radial functions for directional HOA 
microphone: cardiod sensors (top) and omnidirectional 
sensors at the surface of a rigid sphere (bottom). 

A different approach for improving the directivity of 
continuous spherical microphone consists in introducing 
into the sound field a diffracting structure, e.g. a rigid 
sphere. Such a rigid sphere has already been used by 
Gary Elko [20] for the construction of a 1st order 
differential microphone with 3D adjustable orientation 
and more recently for spatial sound recording and 
beamforming [9, 21] in parallel to authors’ work. In 
presence of a rigid sphere, the sound field is defined as a 
combination of direct and diffracted sound pressure 
[18]: 

( ) ( ) ( )
( )

( )

( )

rig
0

0 1

, ,

,

m
m m

m m
m

mn mn
n

j kR
p kr j kr h kr

h kR

B Yσ σ

σ

θ δ

θ δ

+∞
−

′−
=

= =±

′⎛ ⎞
= −⎜ ⎟

⎝ ⎠

×

∑

∑ ∑
 (18) 

where R  is the radius of the sphere, ( )mh kr−  the 
divergent Hankel function, and ( )mh kR′−  its 1st 
derivative according to kR . A particularly interesting 
case is the recording of acoustic pressure at the surface 
of the rigid sphere ( r R= ): 

 
( )

( ) ( )

( )

1

rig 2
0

0 1

, ,

,

m

m m
m

mn mn
n

ip kR
kR h kR

B Yσ σ

σ

θ δ

θ δ

+∞ −

′−
=

= =±

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

×

∑

∑ ∑
 (19) 

The radial dependence between brackets is shown in 
Figure 10. As for the cardioid sensor case, this radial 
function equals zero only for 0kr =  (and 0m > ). 
Orthogonal projection of Equation (19) onto the 
spherical harmonic basis leads to the following 
expression of HOA signals: 

( ) ( )( )
( )

21

rig ( , , ) ,

m
mn m

mn
S

B i kR h kR

p kR Y dS

σ

σθ δ θ δ

− + −′=

×∫∫
   (20) 

which is defined for ( ) ( )21 0m
mi kR h kR− + −′ ≠ , i.e. for 

0m >  and  0kR >  as we can see in (Figure 4). HOA 
signal can therefore be estimated according to the 
method describe in Figure 9 by defining equalisation 
filters as follow: ( ) ( )21( ) m

m mEQ kR i kR h kR− + −′= . 

In conclusion, directional spherical microphone seem to 
be more adapted than omnidirectional one to HOA 
recording since equalisation filters are defined for all 
non-null frequencies. Nevertheless, we can see in Figure 
10 that an excessive amplification remains below a limit 
value of kR  that increases with order m . Indeed, 
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especially for higher orders and low frequencies, the 
microphone tries to catch spatial information that is very 
poor at the measurement point and is substantial only at 
a distance from the recording system. Consequently, the 
microphone will be in this case very sensitive to 
estimation errors (e.g. sensor self-noise, position errors).  
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Figure 11 Inverse of radial functions ( )mEQ kR  for 
cardioid and rigid sphere cases. 

3.2. Discretization of the continuous spherical 
microphone 

3.2.1. Discrete formulation of the estimation 
problem 

In order to realize a spherical HOA microphone, we 
must use a finite number of sensors. On a spherical 
surface of radius R, we define a set of Q points at 
locations given by the angles ( ),q qθ δ , 1 q Q≤ ≤ . We 
only take into account the cases of spherical directional 
microphone and omnidirectional sensors at the surface 
of a rigid sphere. In these two cases, the qth sensor picks 
up an acoustic signal which can be expressed as follow: 

 ( )
0 0 1

( , )
m

q m mn mn q q
m n

S W kR B Yσ σ

σ
θ δ

+∞

= = =±
= ∑ ∑ ∑  (21) 

where 

 

( ) ( )21

directional microphones

rigid sphere

( ) ( 1) ( )

( )

m m

m

m
m

j kR i j kR

W kR

i kR h kR

α α

− + −

⎧ ′+ −
⎪
⎪⎪= ⎨
⎪ ′⎪
⎪⎩

 (22) 

Actually, we can estimate HOA signals up to a 
restricted order M  such that the total number 

2( 1)K M= +  of components does not exceed the number  
Q  of sensors ( K Q≤ ). Thus, we consider the M  order 
truncation of Equation (21). The resulting system of 
linear equations can be written in discrete matrix form: 

⋅ =T b s , (23) 

where the Q K×  "transfer matrix" T , the K -length 
column vector b  and the Q -length column vector s  
are defined as follow, respectively: 

( ) ( )

( ) ( )
( )[ ]

( )[ ]

1 1
00 1 1 0 1 1

1 1
00 0

, ,
diag

, ,

diag , 0

M

m

Q Q M Q Q

m

Y Y
W kR

Y Y

W kR m M

T

Y

θ δ θ δ

θ δ θ δ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

= ⋅ ≤ ≤

"
# # #

"

( )1 2, , ,
t

QS S S=s K , ( )1 1 1 1 1
00 11 11 10 0, , , , ,

t
MB B B B B−=b K . 

Due to the spherical geometry of the microphone array, 
the matrix T  is a product of a real matrix Y  whose 
columns are sampled spherical harmonics ymn

σ by a 
diagonal matrix of radial-dependent filters. The vector 
s  contains the signals recorded by the Q sensors and b  
is the vector whose elements are the unknown HOA 
signals up to a finite order M . These two last vectors 
are connected by a discrete mathematical model, the 
matrix T .  

3.2.2.  “Naive” least-squares resolution and 
instability of the solution 

Since the matrix T  is  a Q K×  rectangular matrix with 
more rows than columns ( Q K≥ ), the system (23) is 
overdetermined. In general, such a linear system cannot 
be solved exactly and the problem amounts to find an 
approximate solution which minimizes the square norm 
of the residual [22]: 

2
2min −

b
s Tb . 
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The solution LSb  to this minimization problem satisfies 
a new system of linear equations called normal 
equations [22]: 

 ( ) LS
∗ ∗=T T b T s . (24) 

where ∗T  denotes the transpose conjugate of the 
complex matrix T . As the columns of the matrix T  are 
linearly independent, the definite positive matrix ∗T T  
is invertible and the solution of the system (24) can be 
expressed as follow [22]: 

 ( ) 1
LS

−∗ ∗=b T T T s . (25) 

LSb  is the least-squares solution of the system (23), i.e. 
the solution which corresponds to projecting b  onto the 
columns space of T . By introducing the factorized 
expression of the matrix T  in Equation (25), we finally 
obtain: 

 
( )
1diag ,LS

mW kR
⎡ ⎤= ⎢ ⎥⎣ ⎦

b E s  (26) 

where 

( ) 1t t−=E Y Y Y . 

The real matrix E  is usually called the Moore-Penrose 
inverse of the matrix Y  [22]. 

The “naïve” least-squares resolution of the system (23) 
provides an easy way to compute its best approximate 
solution LSb  in the least-squares sense. Nevertheless, 
even if the residual is theoretically minimized, the 
solution becomes meaningless when ( )mW kR  is very 
small, i.e. corresponding to low frequencies and highest 
estimate order. Indeed, the system (24) is in this case 
particularly instable so that small errors in the measure 
vector s , e.g. due to sensor self-noise or sensor position 
errors, are magnified in the resulting estimation of HOA 
signals LSb . A useful objective indicator of non-
stability of the system (24) is the condition number of 
the matrix ( )∗T T  defined by [22]: 

     ( ) 1

2 2
( )κ −∗ ∗ ∗=T T T T T T .  (27) 

The ideal condition number is worth 1 and means that 
all columns in the matrix are linearly independent and 
of balanced norm. When the level difference between 
columns vectors become too large, ( )κ ∗T T  increases. 
The matrix ∗T T  is said ill-conditioned if ( ) 1κ ∗ >>T T . 
The resulting relative error of the least squares solution 
can be as large as the product of the relative residual by 
the condition number [22]: 

 2 2

2 2

( ) LSLS

LS
κ

∗ ∗
∗

∗

−−
≤

T s T Tbb b
T T

b T s
. (28) 

Consequently, a poorly conditioned matrix T  can lead 
to a physically meaningless solution. Hence, this 
solution must be replaced by an approximated one 
where the noisy components are filtered out (cf. 
Section 4.1). 

( )1 1 1, ,S kR θ δ
0 0( ) 1/ ( )EQ kR W kR=

1 1( ) 1/ ( )EQ kR W kR=

( ) 1/ ( )M MEQ kR W kR=

M

1
00B

1
11B

1
0MB

Matriçage Egalisation

( )2 2 2, ,S kR θ δ ( ) 1
E Y Y Yt t−

=

( ), ,Q Q QS kR θ δ

( )1 1 1, ,S kR θ δ
0 0( ) 1/ ( )EQ kR W kR=

1 1( ) 1/ ( )EQ kR W kR=

( ) 1/ ( )M MEQ kR W kR=

M

1
00B

1
11B

1
0MB

Matriçage Egalisation

( )2 2 2, ,S kR θ δ ( ) 1
E Y Y Yt t−

=

( ), ,Q Q QS kR θ δ

 
Figure 12 Discrete spherical HOA microphone 
processing. 

3.2.3. Limitations introduced by discretization: 
spatial aliasing 

The discrete formulation of the problem of HOA 
recording introduces some limitations in the estimation 
process. These limitations concern first the frequency 
band of HOA signals: according to the so-called 
Shannon criterion, the larger distance d  between 
sensors defines a limit frequency above which spatial 
aliasing occurs: 

 al 2 2
c cf
d Rγ

= = , (29) 

where c  is the sound speed, R  is the radius of the 
microphone array, and γ  is the maximum angle 
between two sensors. 

Furthermore, spatial aliasing also concerns 
undersampled spherical harmonic functions. The 
number of distinguishable harmonics by the microphone 
array depends on both the number of sensors and their 
positions on the sphere. For example, in order to 
estimate K different spatial harmonics up to a maximal 
order M, at least K sensors are needed to sample them 
correctly. Moreover, the sensor positions must satisfy 
the discrete orthonormality properties for sampled 
spherical harmonics: 

 1 t
mn m n mm nnQ
σ σ

σσδ δ δ′
′ ′ ′ ′ ′⋅ =y y , (30) 
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where 0 ,m m M′≤ ≤ , 0 ,n n m′≤ ≤ , , 1σ σ ′=± , and the 
Kronecker delta ijδ  equals 1 if i j=  and 0 otherwise. 
Finally, spatial aliasing due to higher order harmonics 
must be taken into account. Indeed, when undersampled 
spherical harmonics of higher order than M are present 
in the sound field, they fold up on the lower components 
and can severely corrupt the estimation of HOA signals. 
To suitably minimize spatial aliasing effects, the sensors 
placed on the sphere must be in general more numerous 
than the HOA signals that we seek to estimate, i.e. 
Q K>  in the system (23). 

4. PRACTICAL DESIGN OF SPHERICAL 
HOA MICROPHONE 

This section aims at deriving a meaningful solution to 
HOA signal estimation by choosing a suitable sampling 
scheme on the sphere and introducing a regularization 
process based on Tikhonov filters [23]. 

4.1. Practical equalization involving 
regularization filters 

4.1.1. Filtering approach of regularization 

The regularization process aims at damping the noisy 
frequency components of HOA signals resulting from 
the least-squares resolution of the system (24). As 
explained above, this filtering concerns essentially low 
frequency bands of HOA signals of highest orders. As 
we assume that the sampled spherical harmonic matrix 
Y  is near to be orthonormal, the regularization can be 
realized by introducing a filter in the equalization: 

 
( )
1( )REG m

m
diag F kR

W kR
⎡ ⎤= ⋅⎢ ⎥⎣ ⎦

b E s  (31) 

where ( )mF kR  is the regularization filter, and the vector 
REGb  contain the regularized HOA signals. An optimal 

regularization filter ( )mF kR  suppresses noise in the data 
vector s  while keeping at the same time all relevant 
information. Various definition of the filter coefficients 
can be obtained by imposing additionally constraints on 
the least-square problem (24). The most commonly used 
method of regularization is probably the Tikhonov 
method [23]. Standard form of Tikhonov regularization 
imposes a maximal energy for the solution, i.e. resulting 
HOA signals. This method can be interpreted by 
defining the filters as: 

 
2

2 2

( )
( )

( )
m

m
m

W kR
F kR

W kR λ
=

+
. (32) 

λ  is the regularization parameter. For λ  equals to 0, 
( ) 1mF kR =  and bREG  simply correspond to HOA 

signals obtained by the direct least squares resolution of 
the system. As λ  increases, ( )mF kR  decay to zero, 
implying that an λ  too large will result in over 
regularized solution. Note that filters ( )mF kR  are 
proportional to 2( )mW kR  and therefore they decay fast 
enough to compensate for the increasing factor 
1/ ( )mW kR . Figure 13 shows ( )mF kR  as a function of 

( )mW kR . Note that Tikhonov filters (cont. line) can be 
interpreted as a 1st order approximation of an 
exponential attenuation (dashed line). Equalization 
filters are finally defined by: 

 2 2

( )( )
( )

m
m

m

W kREQ kR
W kR λ

=
+

, (33) 

where ( )mW kR  is the complex conjugate of ( )mW kR . 
We can recognise the standard expression of Tikhonov 
regularization used for instable filters [24]. 

 
 

10-2
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( )W kRm λ= ( ) 10W kRm λ=

( )mW kR  

( )F kRm

2

2
( )

1
mW kR

e λ
−

−

Figure 13 Illustration of the regularization filter 
( )mF kR  as a function of ( )mW kR . 

4.1.2. Choice of the regularization parameter 
A suitable choice of regularization parameter λ  is not 
trivial. Indeed, too large values of λ  yield over-filtered 
solution. On the other hand, a too small parameter 
results in not enough filtered one. An ideal parameter 
must avoid noise in the solution while preserving at the 
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same time all of its relevant information. The 
regularization parameter λ  can be related to a unique 
maximal amplification factor a  induced by the filters 

( )mF kR : 

 
2

2

1 1 1/

1 1 1/

a

a
λ − −

=
+ −

. (34) 

The choice of the maximal amplification factor a can 
advantageously take into account improvement in the 
signal to noise ratio due to the use of multiple sensors. 
In this case, a is directly connected to sensor noise 
amplification by: 

 2010
sa

a Q= . 

where sa  is the maximum sensor noise amplification 
expressed in dB, and Q  is the total number of sensors 
used. A large number of sensors improves the signal to 
noise ratio of the spherical microphone array and yield 
to a larger amplification factor a  (for a constant 
maximal noise amplification sa ), and so an accurate 
estimation of HOA signals. In general, the 
regularization parameter λ  can be set by trial and error 
method. 

4.2. Spatial sampling on the sphere 

4.2.1. Equiangular sampling 

In a way similar to the standard sampling theorem in 
one dimensional space, Driscoll and Healy [25] stated 
that a band limited function defined on a sphere, i.e. a 
function for which 0mnBσ =  if m M>  can be exactly 
recovered from a finite sum of samples of this function. 
This requires to sample uniformly and independently 
the angles θ  and δ  at 2 2M +  locations: 

 
, 0, ,2 1

2 2
2 0, ,2 1
2 2

i

j

i
i M

M
j j M

M

πθ

πδ

= = +
+

= = +
+

…

…
 (35) 

Exact formulation of HOA signals up to order M  is 
then expressed as follow: 

 
2 1 2 1

0 0

1
( )

2 ( , ) ( , )
2 2m

M M

mn i R i j mn i j
i jW kR

B s Y
M

σ σπ α θ δ θ δ
+ +

= =

=
+ ∑ ∑  (36) 

where the coefficients iα  given in [25] have been 
introduced to compensate for the difference between the 
density of points near the poles and that in the equatorial 

zone. Equation (36) requires ( )24 1M +  sensors arranged 
on the sphere to compute HOA signals up to M order. 

It is however possible to reduce by half this number by 
using a Gaussian quadrature [26]. δ  is then sampled at 
unequally spaced angles according to the 1M +  zeros of 
Legendre polynomials, so that 1(sin ) 0M jP δ+ = , 

0, ,j M= K . Equation (36) becomes: 

        
1 2 1

0 0

1 ( , ) ( , )
( )

M M

mn j R i j mn i j
i jm

B s Y
W kR

σ σα θ δ θ δ
+ +

= =

= ∑ ∑  (37) 

where the coefficients jα  are the associated weights to 
Gauss sampling [26]. Nevertheless, the total number 

( )22 1M +  of sensors required remains very high and not 
optimal. In order to reduce this number, we need to find 
more regular sampling schemes. 

4.2.2. Regular and semi-regular polyhedral 
sampling 

Unfortunately, it is not possible to uniformly sample the 
surface of a sphere, except in five particular cases, 
according to the vertices of Plato’s polyhedrons [27]: 
tetrahedron, hexahedron, octahedron, dodecahedron and 
icosahedron. As these regular point distributions are not 
defined directly according to spherical harmonics, we 
need to examine the orthonormality properties of 
induced sampled spherical harmonics. This can be done 
by considering the orthonormality error matrix defined 
by: 

 1 t
K Q

= − ⋅D I Y Y , (38) 

where IK  is the K K×  identity matrix with 
( )21K M= + , Q  is the number of sampling points, and 

the columns of the matrix Y  are sampled spherical 
harmonics. Figure 14 shows the matrix D  associated to 
all five regular polyhedrons. Orthonormality error 
between two sampled spherical harmonics is 
represented by a small gray square. For more clarity, 
harmonics of different orders are separated by lines. We 
can see that the tetrahedron, the hexahedron, and the 
dodecahedron yield arrangements which satisfy exactly 
the orthonormality condition up to order 1. Note that the 
so-called SoundField microphone [5] used for 
Ambisonics recording (1st order HOA) is based on a 
tetrahedral sampling scheme. The icosahedron and the 
dodecahedron vertices preserve the orthonormality 
properties of sampled spherical harmonics up to order 2. 
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Figure 14   Matrices of orthonormality error for the five 
regular polyhedrons. Gray level is related to error level. 
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Figure 15 Matrix of orthonormality error associated to 
the pentakis-dodecahedron. Gray level is related to error 
level. 

In order to record higher order HOA signals, sampling 
schemes based on semi-regular polyhedrons, i.e. convex 
polyhedrons for which faces are regular polygons but at 
least of two different types, can be investigated. We 
have constructed a 4th order spherical microphone based 
on the vertices of a pentakis-dodecahedron which 

consists of a combination of an icosahedron and a 
Dodecahedron (cf. Figure 16). The matrix of 
orthonormality error of such a polyhedron is represented 
in Figure 15 and will be discussed in Section 5. 

4.2.3. Quasi-uniform sampling 

Now the question is: how to arrange in a homogeneous 
way a set of points at the surface of a sphere? The 
answer depends on the mathematical definition of 
“homogeneous” that we choose. Indeed, different 
existing interpretations lead to slightly different 
arrangements. For example, a first approach consists in 
finding the centres of non-overlapping identical circles 
such that their radius is maximized (packing problem). 
Another very similar method aims at defining the 
centres of overlapping identical circles which entirely 
cover the surface of the sphere such that their radius is 
minimized (covering problem). A last example to define 
point positions on a sphere derives from solving the 
problem of finding the lowest energy configuration of 
point charges on a conducting sphere (Thomson 
problem). Results of all these methods are available on 
Internet for various numbers of points, e.g. [28, 29]. 
Although these methods yield a relative equidistance 
between sensors, they are not directly linked to 
spherical harmonics and don’t guarantee the 
orthonormality condition for sampled spherical 
harmonics. The properties must be analyzed in terms of 
the orthonormality error matrix D  define by 
Equation (38). 

5. CONSTRUCTION OF A 4TH ORDER 
PROTOTYPE 

5.1. Geometrical description and associated 
characteristics 

5.1.1. The choice of sensor positions 

The distribution of sensors on the rigid sphere is based 
on the 32 vertices of a pentakis-dodecahedron shown in 
Figure 16. Such a polyhedron can be seen as the 
association of a dodecahedron (12 vertices) and an 
icosahedron (20 vertices). This sampling scheme is not 
exactly uniform since angles between sensors are not 
equal. Indeed, angular gap between two vertices of the 
dodecahedron and between one vertex of the 
dodecahedron and one of the icosahedron are worth 
0.73 and 0.65 radians, respectively. Nevertheless, as we 
can see in Figure 15 the discrete spherical harmonics 
associated to this sampling scheme is very close to be 
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orthonormal up to order 4 although the maximum 
diagonal term and the maximum off-diagonal term 
correspond to an error of 3.7% and 3.73%, respectively. 
Also, we can see in Figure 15 that spatial aliasing could 
potentially occur in the 1st and 3rd orders if the 5th order 
is strongly present in the sound field near the sensors. 

 

 
Figure 16 Spherical distribution of sensors according to 
the 32 vertices of a pentaki-dodecahedron.  

 

5.1.2. The choice of the radius 

The choice of the radius results from a compromise 
between spatial aliasing at high frequencies and 
consistence of estimation at low frequencies for highest 
order. The radius of our prototype is worth R=3,5cm 
which corresponds to approximates aliasing frequencies 
of 6700Hz and 7500Hz for the largest angular gap and 
the smallest one, respectively. The size of the spherical 
microphone array also determines the “presence level” 
of HOA signals according to order by means of the 
functions ( )mW kR . Since the sampled spherical 
harmonic matrix Y  is approximately orthonormal, the 
condition number of the matrix ∗T T  in Equation (24), 
i.e. the stability of the estimation process, depends only 
on the functions ( )mW kR  (and so the radius R): 

       
2

2

max( ( ) , 0 )
( )

min( ( ) , 0 )
m

m

W kR m M

W kR m M
κ ∗ =

=
=

T T
K

K
 (39) 

Figure 17 illustrates the modulus of the functions 
( )mW kR   for orders m=0 to 4 in parallel to the condition 

number of the matrix ∗T T . We can easily see that 
( )κ ∗T T  rapidly increases while the difference between 

( )mW kR  of distinct orders increases. Instability occurs 
in highest orders and at low frequencies. 
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Figure 17  Functions ( )mW kR  and the condition 
number of the transfer matrix ∗T T  as a function of 
frequency (r=3,5cm). 
 

5.2. Realization and implementation of the 
prototype 

The 4th order HOA microphone prototype illustrated in 
Figure 18 is made of an empty plastic ball that is 
acoustically non-strictly rigid. Holes are distributed over 
the sphere to incorporate a regular configuration of 
HOA microphone network. Small placement errors may 
occur and could be corrected with post signal 
processing. The sphere is cut into two parts to insert the 
32 sensors from inside. The sensors wires are pool 
together to a plastic sheath fixed to the ball. Sensors 
close to the sheath will have directivity errors compared 
to theoretical model discussed in 6.3. 
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Figure 18 32 sensors compose the 4th order HOA 
microphone prototype.  

Figure 19 shows regularization filters associated to the 
prototype for different maximal sensor noise 
amplification: 0dB, 6dB and 20dB. 
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Figure 19 Amplitude of theoretical and regularized 
equalization filters ( )mEQ kR  (dashed lines and cont. 
lines resp.) with 3 different regularization parameters 
corresponding to 3 max. noise amplification levels: 
0dB, 6dB, and 20dB. (Note that maximal gains of 
equalization filters go +15dB beyond these limit values, 
accordingly to the number of sensors used.) 

Acquisition system is composed of a 32 channel home-
made preamplifier, two MOTU 24I/O AD converters 
plugged to a MOTU PCI424 card in a computer. The 
software Plogue Bidule is used in combination with 
VST plug-ins to make real-time recording and rendering 
over a predefined configuration of loudspeakers or over 
headphones.  

6. OBJECTIVE MEASUREMENTS AND 
VALIDATION 

6.1. Measurements 

6.1.1. Free field measurements 

The 4th order, 32 sensor prototype microphone has been 
measured in IRCAM anechoic chamber. It has been 
mounted on a Brüel and Kjær turn table situated in the 
middle of the room allowing azimuth rotation. Two 
laser lights installed above the system and at 0° 
elevation respectively indicate the centre position of the 
microphone. A Tannoy loudspeaker mounted on a 
moving arm allowing elevation measurements was used. 
The setup is shown Figure 20. 

The spherical microphone array has been measured 
every 5 degrees from 0 to 360 degrees azimuth and from 
-40 to 90 degrees elevation, totalizing N=1971 measures 
for each microphone. The correlation between the 0 
degree and the 360 degrees azimuth sensors response 
has been calculated verifying the measures repeatability.  

 
 

 
Figure 20  Free field measurements setup for the 32 
sensors microphone in IRCAM anechoic chamber. 
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A Studer 24 channel preamplifier has been used for the 
acquisition measurements. Therefore measurement 
procedure has been performed twice to get the responses 
of 24 sensors at once. 12 sensors have been measured 
twice allowing us to verify the measures.  

We used logarithm sine sweep method with a 16th order 
sequence. We placed the signal level in order to have at 
least 30dB dynamic range to the measured impulse 
response. 

During the measurements it was not sure that the centre 
of the sphere microphone strictly remains on the 
turntable rotation axis, nor on the loudspeaker rotation 
axis. To estimate the subsequent time shift in measured 
responses and compensate for it, we calculated for each 
incidence the barycentre of the arrival time of all 
sensors responses. The maximal time shift we found 
corresponds to a distance of 7mm, which has negligible 
impact in terms of angle error but had to be taken into 
account for phase correction of responses.  

The loudspeaker response has been measured with a ¼ 
inch B&K microphone. The sensors measures were 
deconvolved by the loudspeaker response in order to 
remove its influence.  

6.1.2. Diffuse field measurements 

The directional sphere was not completely sampled 
during the free field measurements: - 90 to - 40 degrees 
elevation measurements were left apart due to system 
limitation. In order to evaluate the individual sensor 
response discrepancy complementary diffuse field 
measurements have been done in IRCAM "Espace de 
Projection" room. 

Sensors have been measured with the same equipment 
than free field measurements. The logarithm sine sweep 
sequence was longer (18th order) to have a diffuse field 
in the room. 

We used the Matlab "Room Analysis Toolbox" (RAT) 
developed by IRCAM and based on Early Decay Curve 
analyses. Diffuse field sensors responses were estimated 
on the basis on the initial power spectrum response, 
which is estimated by linear regression of the retrograde 
integration of the energy decay curve for each frequency 
band (short time Fourier transform on each band).  

6.2. Comparison of sensors responses with 
the sphere diffraction model 

The prototypes we built are hoped to be conform 
enough to the theoretical model of sphere microphone 
of 5 for which we’ve been able to define an appropriate 
processing. Nevertheless, such real prototypes 
potentially present various questionable features: 
sphericity, acoustic rigidity, acoustic disturbance (by the 
bottom sheath), radius, positioning errors, individual 
responses discrepancy. In the following, we present 
some first methods to identify and characterize 
deviations from the model.  

For this purpose, sensors' responses have been simulated 
for the same wave incidences as used in measurements, 
accordingly to the prototype description (radius, sensors 
positions) of section 5. Simulations were performed 
from (19). Sound speed has been fixed to 
c=340m/s.These simulations are used as a reference 
basis for comparison with the measured directivity. This 
helps to analyze how well the measures match the 
model, what are the non modelled disturbances, and to 
detect possible positioning errors.  

From this point we still use the notation introduced in 3 
to describe “sphere related” transfer functions (instead 
of signals) with the assumption of sound fields 
consisting in a single plane wave. For each sensor q, we 
get a set of N transfer functions sn

q(θn,δn) associated to 
the N directions (θn,δn) of measurements. These 
compose the vector sq (which might be merely noted s).  
It is implicitly understood that such vectors and their 
elements are functions of the frequency f. We'll denote 
respectively by sq

meas and sq
model the data derived from 

measurement and simulation.  

6.2.1. Qualitative comparison of directivities 

Figure 21 shows 3D plots of sensors directivity for one 
sensor in the upper hemisphere (#4) and for one sensor 
near the sheath, below the sphere (#16). In the first case, 
the global directivity shape looks the same for both 
measured and simulated responses, even in relatively 
high frequency although a slight change can be 
observed at low elevation angles. For sensor #16, the 
shape is roughly respected at relatively low frequency, 
but the plot at 8kHz makes clearly appear the 
disturbance of the measured directivity caused by the 
sheath underneath the sphere (loss of axial symmetry 
compared with the model). 
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Figure 21 3D plots of measured (meshed plot) and 
simulated (in transparency) directivity for sensors #4 
(top) and #16 (bottom) and at frequencies f=1kHz (left) 
and f=8kHz (right), with respect to sensor and axis 
positioning of Figure 18.  

Figure 22 shows polar patterns at elevation=0° and for 
sensor #5, which is located in the horizontal plane and 
shouldn't be to much affected by acoustic disturbance of 
the bottom sheath. The global shapes of measured and 
simulated patterns fit rather well together. We notice 
that with the model, secondary lobes are always a bit 
greater than with the measure, while the troughs mostly 
coincide2. That means that the real prototype is slightly 
more directive than the model. At this point, it is hard to 
state whether the difference is mostly due to sheath 
disturbance or non strict acoustic rigidity of the sphere. 

  

                                                           
2 We tried simulations with several values of sound 
speed c without getting a significantly better matching. 
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Figure 22 Polar patterns of measured (cont. lines) and 
simulated (dashed lines) sphere directivity for sensor #5. 
Directivities normalized with respect to the max values. 

6.2.2. Quantitative analysis using spatial 
correlation 

A more quantitative and global assessment of the sphere 
directivity model can be achieved by calculating spatial 
correlation between model and measure over the entire 
set of measurement incidences. We first compute it on 
the spectra modulus of sensors responses (40): 

 

modelmeas

modelmeas

, .

,
modelmeas

ss

ss
SS

=R ,   (40) 

where we introduce the spatial scalar product and norm 

 yγxyx ).diag(., *=  and xxx ,= ,  (41) 

with the vector γ of spatial weightings (which sum is 
equal to 1) to compensate for the non homogeneous 
distribution of measurement angles around the sphere.  

The top of Figure 23 shows that values are very close (if 
not equal) to 1 especially at low and mid frequencies. 
They decrease at high frequencies especially for a few 
sensors. Although it’s hard to state a quality judgment 
from absolute values, it worth noticing that the worst 
values concern the sensors [#10,12,15,16] near the 
sheath underneath the sphere, which causes a disturbing 
and non modelled diffraction effect.  
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Figure 23 – Spatial correlation on spectra modulus (top) 
and complex spectra (bottom) between measured and 
simulated sensors responses. 

As phase relationships are important when recombining 
sensors responses to form HOA directivities, it is 
relevant to compute spatial correlation on complex 
spectra (42), which includes the quality of phase 
matching between both modeled and measured 
directivity responses. For this purpose, the temporal 
realignment of measures as described in 6.1.1 is 
essential.  

 meas model

meas model

meas model,

,

.
R =s s

s s

s s
  (42) 

Bottom of Figure 23 shows that sensors #10,12,15,16 
still present the worst values. It also shows relatively 
bad values for few sensors (eg #7,14) that presented a 
quite good directivity shape (from correlation on 
modulus). This is probably not due to the sheath 
disturbance (all the more that sensor #14 if quite 
elevated and far away from the sheath), but rather to a 
slight positioning error on the sphere that causes a shift 
of phase information (related to time arrival of 
impinging waves) over the entire sphere. As a matter of 
fact, a position error of roughly 1 or 1.5 mm could be 
visually observed for these sensors.  

To summarize, spatial correlation values are globally 
good or very good. Nevertheless, it would be worth 
converting phase errors into phase delay errors in order 
to better identify positioning errors. Moreover, little 
phase errors (and therefore little complex response 

errors) at low frequency might be greatly amplified by 
microphone processing and might result in significant 
HOA reconstruction errors. This will be discussed in 
6.3.3. 

6.2.3. Extraction of individual sensors 
responses 

In addition to directivity properties, another potential 
deviation of our prototypes from the theoretical model is 
the discrepancy between individual sensor responses. 
Equivalent free field response of each sensor (i.e. as 
omni directional sensor in the absence of the diffracting 
sphere) can be estimated together with the spatial 
correlation above, from the same measurements and 
simulations. Indeed, the measured responses can be 
factorized into the directivity effect and the sensor 
response. Provided that the measured directivity fits the 
model well enough (which is globally the case), 
equivalent free field response of a given sensor is 
estimated as: 

 meas freefield modelˆ .s=s s  (43) 

 
meas model

freefield
2model

,
ŝ =

s s

s
  (44) 

This uses the diffraction model to spatially weight the 
measures and compensate for their absence in the 
bottom part of the directional sphere, where the bottom 
sensors should have their maximum response. In 
principle the estimation is as reliable as the calculated 
spatial correlation is good, which is presently the case.  

We find that sensors responses are mostly parallel with 
a maximum level difference less than 3dB. Relative 
levels found between these estimations are compliant 
with diffuse field responses estimations discussed in 
6.1.2.  

6.3. Objective characterization of the HOA 
microphone prototype performances 

6.3.1. Processing methods and computation 
parameters 

To objectively analyse the performance of our HOA 
microphone prototype, we process the measured 
responses by means of the matrix and filters defined in 
5.2, with regularisation parameters corresponding to a 
maximum noise amplification of resp. +0dB, +6dB and 
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+20dB. In order to distinguish between the limitations 
inherent to the model and the artefacts due to the 
“imperfectness” of the prototype regarding the model, 
we process the same way the simulated responses 
already involved in 6.2. We’ll note 1[ ... ]TQ=S s s  the 
matrix of measured (or simulated) responses and 

1
ˆ ˆ ˆ[ ... ]TK=B b b  the matrix of estimated HOA responses, 
ˆ

kb  being the vector of responses for all measurement 
directions for the of the kth HOA component. HOA 
responses are obtained from ˆ .=B P S , with the global 
processing matrix:  

 ( )diag .mEQ=P E  (45) 

Finally, to investigate the real potential of the prototype 
after removing the limitations caused by its discrepancy 
from a known model, we introduce and try another kind 
of processing matrix P. This is such that when applied 
on the whole set S of measured responses, the set of 
estimated HOA responses ˆ .=B P S  fits the best the 
HOA gains B expected regarding the measurement 
directions. This leads to a classical minimisation 
problem that can be solved in practice by system 
inversion with regularisation, as it was discussed in 
previous sections. The “optimal” processing matrix is 
computed according to the following equation: 

 * * 1.diag( ). .( .diag( ). )λ −= +P B γ S S γ S I , (46) 

where regularisation parameter λ is tuned in the same 
way as in 4.1.2 (but without the factor Q ) to induce 
the same maximum value of noise amplification. 
Nevertheless, parameter λ and equation (46) have to be 
slightly modified to ensure both a little value of noise 
amplification (esp. 0dB) and a correct response level. 
Note that this matrix is frequency dependent, i.e. it is a 
matrix of filters that is much more consuming3 than the 
factorized solution in terms of digital signal processing.  

In the following sections, we’ll denote by b and b̂  the 
vector of resp. theoretical and estimated HOA 
responses. We’ll use labelling (fMo+XdB) or 
(iMe+XdB) when referring resp. to factorized 
processing (45) or the solution (46), with a max noise 
amplification of X dB. 

                                                           
3 Nevertheless we have verified that such a 32x25 filter 
matrix, with 256-tap FIR, can process in real time on an 
ordinary computer, if it is appropriately implemented. 

For clearer illustrations, sensors responses have been 
pre-equalized to compensate their mean "free-field" 
response, without changing their relative levels. 

6.3.2. Qualitative comparison of reconstructed 
and expected HOA directivities 

With the aim to give a first qualitative insight into what 
happens in terms of HOA directivity reconstruction, we 
first focus on the result of the factorized processing 
(fMo+0dB). 

Figure 24 shows 3D plots of some reconstructed 
directivities for 2 symptomatic frequencies. At 5 kHz, 
the patterns are mostly very well reconstructed (the 
slight amplitude mismatch will be discussed later). At 
10 kHz, i.e. beyond the so-called spatial aliasing 
frequency (estimated as 7.5kHz in 5), patterns appear 
quite disturbed. One easily observes the presence of 
spherical harmonics of higher orders than the estimated 
ones, with sometimes a common azimuth (or elevation) 
dependence, presenting numerous additional lobes 
(higher angular frequencies). This is namely the effect 
of spatial aliasing.  

To better assess the quality of reconstruction as a 
function of the frequency, let’s focus on the horizontal 
section (0 degree elevation angle) of directivity patterns 
and to “horizontal” HOA components. Figure 25 shows 
“cylindrical views” formed by concatenating these 
horizontal sections along a vertical axis that represents 
the frequency scale. It clearly makes appear a transition 
frequency [band] (about 7 or 8kHz or even above 
depending on the order m) where patterns begin getting 
disturbed in terms of proportion between lobes and/or 
number of lobes. On the other side the low frequency 
response, which is very good for the 0th component, 
progressively thins out over a low frequency band that 
enlarges as the order m increases. This is partly due to 
the quite moderated equalization effort involved in the 
processing here. The next section introduces 
quantitative criteria to further explore the reconstruction 
quality depending on the processing options. 
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Figure 24 Reconstruction of a some specimens of HOA directivity at 5 kHz (top) and at 10 kHz (bottom). From left 
to right: components B22

+1, B21
+1, B32

+1, B44
+1. 

 

 
Figure 25 Cylindrical plots of reconstructed (meshed plots) and expected (in transparency) directivities for 
incidences in the horizontal plane, and for horizontal components Bmm

+1 with m=0 to 4 (from left to right). Vertical 
axis is for frequency (in Hz). 
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6.3.3. Quantitative analysis  

Similarly as in 6.2.2, we compute spatial correlation 
between reconstructed HOA directivities vectors b̂  and 
theoretical ones b: 

 ˆ ,

ˆ ,

ˆ .
R =b b

b b

b b
 (47) 

We complete this by a characterization of the mean 
level of estimated responses, relatively to the expected 
one: 

 ˆ ,

ˆ
L =b b

b

b
 (48) 

These equations indicates that in the case of factorized 
processing, the post-equalization has an impact of the 
component level (i.e. the scale of directivity response), 
but none on spatial correlation (i.e. the respect of the 
directivity "shape"). 

Both a good spatial correlation and a correct level of 
estimated HOA components take part into the quality of 
the captured sound field representation, and therefore of 
its reconstruction at the final rendering stage (after 
spatial decoding) 2.1.3.  

10 3 10
4

0.7 

0.8 

0.9 

1 
Spatial correlation with theoretical HOA directivities

10 3 10
4

-10 

-5 

0 

5 
Level difference between estimated and expected responses

Frequency (Hz) 

1 2 3 4 

1 
2 3 

4 

3 4 4 3 22 1 
1 0 

 
Figure 26 Quality of reconstructed directivity when 
processing is applied to measures. For more readability, 
each group of mth order components is represented by a 
single, mean curve. Vertical bars correspond to limit 
frequencies (700, 1300, 1900, 2500 Hz) corresponding 

to 1st, 2nd, 3rd, and 4th order rendering, as computed in 
2.1.3. For bars and curves, 0th, 1st, 2nd, 3rd, and 4th orders 
are respectively represented in blue, green, red, cyan, 
and magenta, and appear from left to right. Component 
levels (bottom) corresponding to amplification 
parameters +0dB, +6dB resp. appear from right to left 
while darkening in color. 

Figure 26 shows curves computed for measures 
processed with (fMo+0dB) (fMo+6dB) options. The 
case (fMo+20dB) is not plotted here to avoid confusion. 
In the present case, correct spatial correlation is 
bounded by both low and high frequency limits, the 
former being as high as the order. For comparison, 
Figure 27 shows the case of responses obtained from 
simulation. Since no errors are introduced in simulations 
with regard to the model, spatial correlation is perfect 
from 0Hz to the spatial aliasing frequency 7.5 kHz and 
even above (as the order decreases). 
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Figure 27 Same as Figure 26 but for processing applied 
to simulations. 

Relative levels of estimated components look very 
similar in both cases (measures and simulations). They 
are approximately flat over a frequency band (also 
bounded by the spatial aliasing frequency) that extends 
towards low frequencies as much as the order is low and 
as the equalisation effort is high. With a +20dB allowed 
noise amplification, the lower bound of the "correct 
level frequency band" reaches the limit frequencies 
shown as vertical bars, even for 3rd and 4th orders. 
Nevertheless, there is no use to invest such an 
equalization effort (at least for the 4th order components) 
when dealing with the real prototype, for which the 
frequency band of potentially good reconstruction is 
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bounded by the low frequency slope of spatial 
correlation curves: Top of Figure 26 shows that good 
correlation is not reached at the limit frequency for the 
4th order. As a general rule, there's no use that the 
frequency band of correct level exceeds the frequency 
band of correct spatial correlation. 
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Figure 28 Same as previous figures, but with optimised 
processing (iMe+6dB) and (iMe+20dB) applied to 
measures. 

Another useful comparison can be done with the HOA 
estimation derived from the processing labelled 
(iMeXdB) (Figure 28), which is optimized from the 
whole set of measurements (46). With the same given 
estimation effort, it presents roughly the same features 
as above in terms of maximal noise amplification and 
relative level of estimated components (except above 
the spatial aliasing frequency). It presents a spatial 
correlation that improves with higher estimation effort 
similarly to the component level. That means that with a 
more complete knowledge of the prototype's real 
directivity, one is able to reach HOA reconstruction 
properties as good as with model-based simulations. 

6.3.4. Energy vector analysis 

To complete the analysis of the prototype microphone 
performances, we anticipate now another feature of the 
spatialisation effect observed at the final rendering 
stage: that is a localisation criterion called "energy 
vector", introduced and discussed in 2.1.3. We compute 
it by operating a 4th order, "max rE" decoding over 
estimated HOA frequency responses. It is considered to 
be a relevant localisation criterion in the medium-high 

frequency band where acoustic reconstruction at the 
listener scale is no longer satisfied.  

Energy vector characteristics are drawn as functions of 
the frequency in Figure 29 (bottom part): its mean angle 
error regarding the expected directions (i.e. the 
measurement directions) and the "blur width angle" αE 
computed from its mean norm.  
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Figure 29 Global quality of energy vector at the 
reproduction stage:  mean angle error regarding the 
expected directions (dashed lines); "blur width angle" 
αE (cont. lines). All angles are in degrees. 

In almost all cases, the angle error is approximately null 
up to the supposed spatial aliasing frequency and even 
beyond (about 10 kHz). The "blur angle" (attached to 
the vector norm) is quite important at low frequencies. It 
reaches its minimal value at about 5-6 kHz: that is also 
nearly the "optimal" value given by Table 1 for M=4, 
i.e. 18 degrees. It increases again from the spatial 
aliasing frequency and reaches a maximum of 70 
degrees above 10 kHz.  

In the case of factorized processing of measures (Top of 
the figure), it appears that a +6dB estimation effort 
reduces the "blur angle" just a bit (from 5 to 10 
degrees). Curves confirm that a +20dB effort is 
counterproductive: blur angle as well angle error are 
greater at low frequency.  On the contrary, increasing 
efforts are fruitful when applied to the simulated 
responses, as the bottom figure shows it (about 15 
degrees blur angle reduction). Finally, optimised 
measures processing competes with processing on 
simulated responses for the same effort (+20dB on the 
figure). 
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7. CONCLUSION 

This study completes an investigation work done by 
present authors as well as concurrent teams for some 
years on 3D sound field recording with microphone 
arrays, especially in relation with the spatialisation 
approach called "Higher Order Ambisonics". Focussing 
on spherical arrays, this work has led to the construction 
of a 4th order, 32 sensor microphone prototype and the 
design of appropriate signal processing methods 
grounded on both theoretical and practical 
considerations.  

To objectively assess the performance of this HOA 
microphone as an efficient tool for spatially encoding 
natural sound fields, we performed complete directivity 
measurements and analysis. We proposed and discussed 
objective criteria like the spatial correlation between 
estimated HOA directivities with the expected spherical 
harmonics. The relevance of the encoding with regard to 
the sound field reproduction stage has also been 
discussed using the energy vector criterion. As a result, 
the prototype presents a nice potential as a 3D sound 
field recording means with moderate amplification 
effort. Further improvements are expected from this 
study.  

Now a complete HOA spatialisation chain can be 
demonstrated, featuring 3D recording, virtual source 
encoding, sound field manipulations and spatial 
decoding, with signal processing modules implemented 
e.g. as VST plug-ins. As a particular example, real time 
HOA recording, processing and decoding for ITU 
loudspeaker setup as well as for a head-tracked binaural 
rendering, have been successfully demonstrated at the 
"Journées d'Etudes sur la Spatialisation" (JES2006) 
that took place at IRCAM and ENST-Paris in January 
2006. 
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